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a b s t r a c t

We study the structure of a simple dynamic optimization problem consisting of one state
and one control variable, from a physicist’s point of view. By using an analogy to a physical
model, we study this system in the classical and quantum frameworks. Classically, the
dynamic optimization problem is equivalent to a classical mechanics constrained system,
so we must use the Dirac method to analyze it in a correct way. We find that there are two
second-class constraints in the model: one fix the momenta associated with the control
variables, and the other is a reminder of the optimal control law. The dynamic evolution
of this constrained system is given by the Dirac’s bracket of the canonical variables with
the Hamiltonian. This dynamic results to be identical to the unconstrained one given
by the Pontryagin equations, which are the correct classical equations of motion for our
physical optimization problem. In the same Pontryagin scheme, by imposing a closed-
loop λ-strategy, the optimality condition for the action gives a consistency relation, which
is associated to the Hamilton–Jacobi–Bellman equation of the dynamic programming
method. A similar result is achieved by quantizing the classical model. By setting the
wave function Ψ (x, t) = eiS(x,t) in the quantum Schrödinger equation, a non-linear
partial equation is obtained for the S function. For the right-hand side quantization, this is
the Hamilton–Jacobi–Bellman equation, when S(x, t) is identified with the optimal value
function. Thus, the Hamilton–Jacobi–Bellman equation in Bellman’s maximum principle,
can be interpreted as the quantum approach of the optimization problem.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

We have recently witnessed the increasing application of ideas from physics to finance and economics, such as path
integral techniques applied to the study the Black–Scholes model in its different forms [1–7]. Some developments have also
been used to try to understand the Black–Scholes equation as a quantum mechanical Schrödinger equation [8–10]. In the

∗ Corresponding author.
E-mail address:mauricio.contreras@uai.cl (M. Villena).

http://dx.doi.org/10.1016/j.physa.2017.02.075
0378-4371/© 2017 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.physa.2017.02.075
http://www.elsevier.com/locate/physa
http://www.elsevier.com/locate/physa
http://crossmark.crossref.org/dialog/?doi=10.1016/j.physa.2017.02.075&domain=pdf
mailto:mauricio.contreras@uai.cl
http://dx.doi.org/10.1016/j.physa.2017.02.075


M. Contreras et al. / Physica A 479 (2017) 12–25 13

last few years, constrained systems techniques, through Dirac’s method [11,12] have been used to explain some features
of stochastic volatility models [13,14] and the multi-asset Black–Scholes equation [15]. In this paper, we apply these same
constrained methods to understand (from a physical point of view) a particular issue: the dynamic optimization problem.

We start by analyzing the dynamic optimization problem for a single-state variable x and a control variable u. By
identifying the state variable x as the coordinate of a physical particle and the Lagrange multiplier λ as its canonical
momentum px, we can map the theory in the Hamiltonian phase space. Here, the model presents constraints thus, it is
necessary (to study the system in a correctway) to useDirac’smethod of constrained systems. The application of thismethod
implies that constraints are of second-class character according to Dirac’s classification. Thus, the dynamic optimization
problem can be seen as a second-class physically constrained system.

We also analyze the role of open-loop and closed-loop strategies in the context of Pontryagin’s framework. We explicitly
show that the only consistent strategies that permit the Pontryagin equations to be obtained correctly from the optimization
of cost functionals are open-loop λ-strategies (λ = λ(t)). For closed loop λ-strategies (λ = λ(x, t)), the optimization of the
cost functional gives a consistency relation which is related to the Hamilton–Jacobi–Bellman equation.

After that, we explore the quantum side of this classically constrained system. By quantizing it according to the standard
rules of quantum mechanics and imposing the constraints as operator equations over the wave function, we arrive at a set
of partial differential equations for the wave function. After defining the wave function as Ψ (x, t) = eiS(x,t), these equations
map into some partial differential equations for the S function. For right-hand side quantization order, these equations give
origin to the Hamilton–Jacobi–Bellman equation of the dynamic programming theory. Thus, Bellman’s maximum principle
can be considered as the quantum view of the optimization problem.

To make this paper self-contained for non-physicist readers coming from the optimization field, we start with a brief
digression on classical and quantum physics in Section 2.

2. Quantum and classical mechanics

2.1. Hamiltonian quantum and classical mechanics

In physics, quantum-dynamic behavior is defined by the Hamiltonian operator. For the simple case of a nonrelativistic
one-dimensional particle subjected to external potential U(x), the Hamiltonian operator reads

Ȟ =
1
2m

P̌2
x + U(x) = −

h̄2

2m
∂2

∂x2
+ U(x),

where P̌x = −ih̄ ∂
∂x is the momentum operator. The wave function at time t (given that the wave function at t = 0 is Ψ0) is

thus

Ψ (x, t) = e−
i
h̄ Ȟt

Ψ0(x),
which can be written as a convolution according to

Ψ (x, t) =


K(x, t|x′0)Ψ0(x′)dx′,

where the propagator K admits the Hamiltonian Feynman path integral representation:

K(x, t|x′0) =


Dx

Dpx
2π

exp


i
h̄
A[x, px]


. (1)

The symbol


DxDpx
2π denotes the sum over the set of all trajectories that start at (x0, p0x) for t = 0 and end at (x, px) at time

t in the phase space. Thus, all trajectories are needed to evaluate the quantum propagator. In (1), A[x, px] is the classical
Hamiltonian action functional, given by

A[x, px] =


pxẋ − H(x, px) dt,

where H is the Hamiltonian function

H(x, px) =
1
2m

p2x + U(x). (2)

From the classical dynamics (Newtonian equations) of the quantum system, we understand the particular trajectory in the
phase space (x, px) that gives an extreme to the Hamiltonian functional A[x, px]: the path for which the variation of the
action is zero:

δA[x, px] = A[x + δx, px + δpx] − A[x, px] = 0.
We can show that this classical trajectory necessarily satisfies the Hamiltonian equations of motion:

ẋ =
∂H(x, px)

∂px
, (3)

ṗx = −
∂H(x, px)

∂x
.
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These Hamiltonian equations can be written with Poisson brackets { , } as

ẋ = {x,H}, ṗx = {px,H},

where

{F ,G} =
∂F
∂x

∂G
∂px

−
∂G
∂x

∂F
∂px

for any functions F = F(x, px) and G = G(x, px) defined over the phase space (x, px).
The dynamic evolution of a function F = F(x, px) defined over the phase space is given by the classical counterpart of

the Heisenberg equation:

Ḟ = {F ,H} =
∂F
∂x

∂H
∂px

−
∂H
∂x

∂F
∂px

.

Using the Hamiltonian equations, this is

Ḟ = {F ,H} =
∂F
∂x

ẋ +
∂F
∂px

ṗx.

Note that theHamiltonian equations ofmotions are first-order differential equations; for example, for Hamiltonian (2), these
equations are read as

ẋ =
∂H(x, px)

∂px
=

px
m

, (4)

ṗx = −
∂H(x, px)

∂x
=

∂U
∂x

. (5)

Taking the time derivative of Eq. (4) and using (5), one can obtain Newton’s equation of motion for a conservative system:

−
∂U
∂x

= m
d2x
dt2

. (6)

2.2. Lagrangian quantum and classical mechanics

By integrating Eq. (1) over the momentum variables, we arrive at the Feynman path integral representation for the
quantum propagator:

K(x, t|x′0) = N


Dx exp


i
h̄
A[x, ẋ]


. (7)

Here, N is a normalization ‘‘constant’’1 coming from the momentum integration, and A[x, ẋ] is the Lagrangian action
functional

A[x, ẋ] =


L(x, ẋ) dt, (8)

where L is the Lagrangian function defined by

L[x, ẋ] = pxẋ − H(x, px) (9)

and where px has been solved in terms of the velocity ẋ by means of Eq. (3).
For example, in the case of the Hamiltonian (2), Eq. (3) gives the relation

ẋ = {x,H} =
∂H(x, px)

∂px
=

1
m

px;

that is,

px = mẋ, (10)

1 Note that the normalization ‘‘constant’’ N is not a free parameter, but it depends on the basic parameters of the physical model. For a free particle
(U(x) = 0 in (2)), after integrating over the momentum variable px in (1), one arrive to N =


m

2π ih̄t . Thus, N depends on the Planck constant h̄ and the
particle massm, and in this case N is a function of the time t . For details see for example [16,17].
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which, in this case, corresponds to the usual definition of momentum. Substituting Eq. (10) in the Lagrangian (9) gives

L(x, ẋ) = pxẋ − H(x, px) =
1
2
mẋ2 − U(x), (11)

which is the common expression of the Lagrangian as the difference of the kinetic and potential energies.
Classical mechanics, in the Lagrangian formalism, is linked to the particular path x = x(t) that gives an extreme to the

Lagrangian action functional (8):

δA[x, ẋ] = A[x + δx, ẋ + δẋ] − A[x, ẋ] = 0.

This extremal condition implies that the classical path must satisfy the Euler–Lagrange equation of motion

∂L
∂x

−
d
dt

∂L
∂ ẋ


= 0.

Note that for the Lagrangian (11), we have

∂L
∂ ẋ

= mẋ,
∂L
∂x

= −
∂U
∂x

, (12)

so the second-order Euler–Lagrange differential equation again gives the Newtonian equation of motion for a conservative
system (6). From Eq. (12), we see that

∂L
∂ ẋ

= mẋ = px.

That is, ∂L
∂ ẋ is the momentum of the one-dimensional particle. For a general Lagrangian L(x, ẋ), the relation

px =
∂L
∂ ẋ

(13)

is a definition of the linear momentum of the system. In fact, (13) is the Legendre transformation between the variables
(ẋ, px), communicating the Hamiltonian and Lagrangian classical approaches. In Hamiltonian theory, the analogous role of
the Legendre transformation is given by the first Hamiltonian equation (3).

WhenEq. (13), in the Lagrangian context, can bewritten in terms of the velocity ẋ or, in theHamiltonian context, (3) can be
solved for the momentum px, both approaches are equivalent. Thus, Eqs. (13) and (3) are a bridge between the Hamiltonian
and Lagrangian theories, and that bridge is open when the momentum can be solved in terms of the velocity or vice-versa.

However, there are many situations for which this is not possible, and those are the most important ones, as we shall see
later. A typical situation occurs, for instance, when the Lagrangian is a linear function of the velocities, as in

L(x, ẋ) = aẋ + b.

In this case, the momentum is

px =
∂L
∂ ẋ

= a, (14)

from which the momentum cannot be solved in terms of the velocity ẋ. Eq. (14) is a constraint on the momentum variable
in the phase space; it fixes px to take the value a at all times.

In physics, the class of systems for which the Legendre bridges (13) or (3) are closed (that is, when the momentum
cannot be solved in terms of the velocity or vice-versa) are called constrained systems. In this case, the classical Lagrangian
and Hamiltonian theories are not equivalent in general. In a quantum setting, the Lagrangian and Hamiltonian propagators
for a constrained system, (7) and (1) are not equal because the naive integration measure in the Lagrangian/Hamiltonian
Feynman path integral is incorrect due to the presence of constraints.

Paul Maurice Dirac developed a strategy that allows for the study of general constrained systems in the phase space. This
method is now called Dirac’s method [11,12]. In Section 4, we will apply this method to study the Pontryagin equations
regarding the motion of a second-class constrained physical system.

3. Dynamic optimization problem

3.1. The Pontryagin approach

Consider an optimal control problem that is commonly used in financial applications (see, for example, [18]). We want
to optimize the cost functional

A[x, u] =

 t1

t0
F(x, u, t) dt,



16 M. Contreras et al. / Physica A 479 (2017) 12–25

where x represents a state variable (for example, the production of a certain article) and u is a control variable (such as the
marketing cost). The state variable must satisfy the market dynamic

ẋ = f (x, u, t). (15)

The problem is to determine how to obtain the production trajectory x = x(t) and the control path u = u(t) to optimize
the cost functional. To get the solution, we apply the Lagrange multipliers method, so we consider the improved functional
A on the extended configuration space (x, u, λ), which is defined by

A[x, u, λ] =

 t1

t0
F(x, u, t) − λ(ẋ − f (x, u, t)) dt. (16)

To obtain the solution for our problem, we can interpret the integrand of (16) as the Lagrangian

L(x, u, λ, ẋ, u̇, λ̇) = F(x, u, t) − λ(ẋ − f (x, u, t)). (17)

The extremal curves then satisfy the Euler–Lagrange equations:
∂L
∂λ

−
d
dt

 ∂L
∂λ̇


= 0

∂L
∂x

−
d
dt

∂L
∂ ẋ


= 0

∂L
∂u

−
d
dt

 ∂L
∂ u̇


= 0.

These are also written as, respectively,

ẋ − f (x, u, t) = 0
∂

∂x


F + λf


+ λ̇ = 0

∂

∂u


F + λf


= 0,

or as

ẋ =
∂H
∂λ

(18)

λ̇ = −
∂H
∂x

(19)

∂H
∂u

= 0, (20)

with H defined by

H = H(x, u, λ) = F(x, u, t) + λf (x, u, t).

Eqs. (18)–(20) are the well-known Pontryagin equations; they are obtained through the Pontryagin maximum principle.
Note that the first two equations, (18) and (19), are just the Hamilton equations of motion if we interpret the Lagrange
multiplier λ as the canonical momentum px associated to the state variable x. Thus, by identifying λ with px, we can rewrite
the Lagrangian (17) as

L(x, u, ẋ, u̇) = −pxẋ + (F(x, u, t) + pxf (x, u, t)). (21)

The above Lagrangian is minus the Lagrangian of a physical particle in classical mechanics, so dynamic optimization is
completely equivalent to a classical physical system at both the Lagrangian and Hamiltonian levels.

3.2. Open-loop and closed-loop strategies

The action (16) can be written in a compact form as

A[x, u, λ] =

 t1

t0
−λẋ + H(x, u, λ, t) dt. (22)

Strictly, the Pontryagin equations must be obtained by optimizing action (22) with respect to its three variables x, u, λ; that
is, we consider

A[x + δx, u + δu, λ + δλ] =

 t1

t0
−[λ + δλ][ẋ + δ̇x] + H(x + δx, u + δu, λ + δλ, t) dt,
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where δx, δu and δλ are the corresponding functional variations of the initial variables. Now, expanding the Hamiltonian in
a Taylor series and keeping the first-order terms only, we have

δA =

 t1

t0


∂H
∂λ

− ẋ


δλ − λδ̇x +
∂H
∂x

δx +
∂H
∂u

δu

dt.

Finally, integrating by parts, we get

δA =

 t1

t0


∂H
∂λ

− ẋ


δλ +


∂H
∂x

+ λ̇


δx +

∂H
∂u

δu

dt − λ(t1)δx(t1). (23)

To maximize the action, all the first-order terms in δx, δu and δλ must vanish. If the variables x, u and λ are independent,
then δx, δu and δλ are linearly independent, so we obtain the Pontryagin equations (18), (19), (20) and the transversality
conditions λ(t1) = 0 from Eq. (23).

Now, it is well-known that there exist two classes of control strategies:

(a) open-loop strategies that depend only on time, such as u = u(t), and
(b) closed-loop strategies that depend on the state variable x and time, as u = u(x, t).2

For an open-loop strategy, the variational principle for (22) is well-defined because the variables

x = x(t), u = u(t) and λ = λ(t)

remain independent, in such a way that Pontryagin equations can be obtained correctly from (23). In fact, the solutions of
the Pontryagin equations give the extremal curves

x = x∗(t)
λ = λ∗(t)

and the optimal control strategy

u = u∗(t) (24)

which is the solution of the Eq. (20).
But, what happens, however, with closed-loop strategies? In this case, due to the relationships between the variables in

u = u(x, t), the functional variations are related by

δu =
∂u
∂x

δx.

Substituting this into (23), we obtain

δA =

 t1

t0


∂H
∂λ

− ẋ


δλ +


∂H
∂x

+
∂H
∂u

∂u
∂x

+ λ̇


δx

dt − λ(t1)δx(t1).

If λ and x remain independent, we arrive at

∂H
∂λ

− ẋ = 0,
∂H
∂x

+
∂H
∂u

∂u
∂x

+ λ̇ = 0,

plus the transversality condition, but the equation that gives the optimal condition for the control (20) is lost. Then, if u is
not known as a function of x from the beginning, we have three unknowns x, u and λ but only two equations of motion.
Thus, the variational problem is inconsistent for an arbitrary open-loop strategy u = u(x, t).

Now, note that for a open-loop strategy, the control equation ∂H
∂u = 0 is, in fact, the following algebraic equation for u

∂F(x, u, t)
∂u

+ λ
∂ f (x, u, t)

∂u
= 0. (25)

From this equation, the control u can be obtained in principle, as a function of x and λ:

u = u∗(x, λ, t), (26)

where u = u∗(x, λ, t) is the solution of ∂H
∂u = 0, so u∗ is the optimal control strategy.

We conclude then, that the same optimization problem implies that the naive optimal open-loop u∗ strategy in (24) is
actually just a closed-loop strategy! How can this be consistent with the variational problem (23) in which x, u and λ are
independent variables?

2 See, for example [19].
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To understand this, consider an arbitrary closed-loop strategy of the general form u = u(x, λ, t), then we have

δu =
∂u
∂x

δx +
∂u
∂λ

δλ.

After substituting this in (23), δA equals t1

t0


∂H
∂λ

+
∂H
∂u

∂u
∂λ

− ẋ


δλ +


∂H
∂x

+
∂H
∂u

∂u
∂x

+ λ̇


δx

dt − λ(t1)δx(t1), (27)

thus, if x and λ are independent variables, we have the following equations of motions from the variational principle (27):

∂H
∂λ

+
∂H
∂u

∂u
∂λ

− ẋ = 0, (28)

∂H
∂x

+
∂H
∂u

∂u
∂x

+ λ̇ = 0. (29)

Obviously these equations, for an arbitrary closed-loop strategy u = u(x, λ, t), differ from the Pontryagin open loop
equations.

Now, if we choose for u the special optimal closed-loop strategy u∗ which is the solution of (25), that is

∂H(x, u∗, λ, t)
∂u

= 0.

Eqs. (28) and (29) are reduced to

∂H(x, u∗(x, λ, t), λ, t)
∂λ

− ẋ = 0, (30)

∂H(x, u∗(x, λ, t), λ, t)
∂x

+ λ̇ = 0. (31)

But this last set of two equations is equivalent to the three Pontryagin equations. The solutions of (30) and (31) give optimal
paths x = x∗(t) and λ = λ∗(t), from which the optimal control open-loop strategy u∗(t) in (24) can be computed from the
optimal closed-loop strategy (26) according to

u = u∗(t) = u∗(x∗(t), λ∗(t), t).

Thus, the special optimal closed-loop strategy u = u∗(x, λ, t) is completely equivalent to an open-loop strategy u = u∗(t)
over the optimal x∗(t) and λ∗(t) trajectories.

Note that for an arbitrary close-loop strategy, Eqs. (28) and (29) mean that the action is optimized. But, these extremes
are not necessarily global. Condition (20) gives the global extreme for the action A.

To end this section, suppose that λ and x are not independent and they are related by λ = λ(x, t); then, the variation of
λ is

δλ =
∂λ

∂x
δx.

Substituting this into (27) and using u = u∗, λ(t1) = 0, and λ̇ =
∂λ
∂x ẋ +

∂λ
∂t , we get

δA =

 t1

t0


∂H
∂λ

∂λ

∂x
− ẋ

∂λ

∂x


+


∂H
∂x

+
∂λ

∂x
ẋ +

∂λ

∂t


δx dt, (32)

but, as H = F(x, u∗, t) + λf (x, u∗, t), so too is

∂H
∂λ

= f (x, u∗, t, )

∂H
∂x

=
∂F(x, u∗, t)

∂x
+ λ

∂ f (x, u∗, t)
∂x

.

Thus, (32) gives finally

δA =

 t1

t0


f
∂λ

∂x
+

∂F
∂x

+ λ
∂ f
∂x


+

∂λ

∂t


δx dt

or

δA =

 t1

t0

dH∗

dx
+

∂λ

∂t


δx dt
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where

H∗
= H∗(x, t) = H(x, u∗(x, λ(x, t), t), λ(x, t), t) (33)

is the reducedHamiltonian in terms of x. In thisway, the optimization of the actionA, implies that the closed-loopλ = λ(x, t)
strategy must satisfy the following optimal consistency condition

dH∗(x, t)
dx

+
∂λ

∂t
= 0. (34)

We will see in next section that (34) is closely related to the Hamilton–Jacobi–Bellman equation. Let λ∗(x, t) be a solution
of (34); then, the optimal state variable x(t) can be obtained from (15), according to

ẋ = f (x, u∗(x, λ∗(x, t), t), t). (35)

Note that (35) can be viewed as the Pontryagin equation for x(t), in the sense that u∗ and λ∗ are chosen in away that they are
optimal closed-loop strategies, that is, these strategies maximizes or minimizes the action. We make the following points
to conclude this section:

(1) The optimal closed-loop control strategies u∗
= u∗(x, λ, t) that satisfy ∂H

∂u = 0 can be seen as open-loop strategies
because they give the same equations of motion as in the open-loop case. In fact, u∗

= u∗(x, λ, t) is completely
equivalent to u∗

= u∗(t) over the optimal paths x = x∗(t) and λ = λ∗(t). We can say that the optimal closed-loop
control strategies are inert because they do not change the open-loop dynamics.

(2) When the Lagrangemultiplier λ and the state variable x are independent (we say that we have an open-loop λ-strategy),
then λ = λ(t) and the solution of the optimization problem is given by the Pontryagin equations.

(3) If there is a relationship between λ and x as λ = λ(x, t) (we say that we have a closed-loop λ-strategy), this strategy
will be optimal only if it satisfies the consistency condition (34). The solution of the optimization problem is given by
the Pontryagin equation (35), where λ∗ satisfies (34).

3.3. The Bellman approach

A second approach to the optimization problem comes from dynamic programming theory, and was developed by
Richard Bellman [20]. In this case, the fundamental variable is the optimal value of the action defined by

J(x0, t0) = max
u

 t

t0
F(x, u, t) dt


, (36)

subject to (15), with initial condition x(t0) = x0.
The optimality principle of Bellman implies that J(x, t) satisfies the Hamilton–Jacobi–Bellman equation (see [18]):

max
u


F(x, u, t) +

∂ J(x, t)
∂x

f (x, u, t)


= −
∂ J(x, t)

∂t
. (37)

The left-hand side of Eq. (37) is just the maximization of the Hamiltonian (25) with respect to the control variable u, where
the Lagrangian multiplier λ of the Pontryagin approach must be identified with ∂ J(x,t)

∂x . Thus, the Bellman theory can be seen
from the Pontryagin perspective as a closed-loop λ-strategy λ(x, t) =

∂ J(x,t)
∂x .

By maximizing and solving for the optimal control variable in the left-hand side of (37) as u∗
= u∗(x, t) =

u∗(x, λ(x, t), t) = u∗(x, ∂ J(x,t)
∂x , t), the Hamilton–Jacobi–Bellman equation is

F(x, u∗, t) +
∂ J(x, t)

∂x
f (x, u∗, t) = −

∂ J(x, t)
∂t

. (38)

If we differentiate in (38) with respect to x, we get

∂F(x, u∗, t)
∂x

+
∂2J(x, t)

∂x2
f (x, u∗, t) +

∂ J(x, t)
∂x

∂ f (x, u∗, t)
∂x

+


∂F(x, u∗, t)

∂u∗
+

∂ J(x, t)
∂x

∂ f (x, u∗, t)
∂u∗


du∗(x, t)

dx
= −

∂2J(x, t)
∂x∂t

.

Using the fact that u∗ is optimal and replacing λ(x, t) =
∂ J(x,t)

∂x we obtain

∂F(x, u∗, t)
∂x

+
∂λ(x, t)

∂x
f (x, u∗, t) + λ

∂ f (x, u∗, t)
∂x

= −
∂λ(x, t)

∂t
,

or
dH∗(x, t)

dx
+

∂λ(x, t)
∂t

= 0.
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This equation is identical to (34). Thus, this optimal consistency condition for the closed-loop λ∗-strategy is nothing more
but the derivative of the Hamilton–Jacobi–Bellman equation. Then, Eq. (34) can be written, according to (38), as

d
dx


F(x, u∗, t) +

∂ J(x, t)
∂x

f (x, u∗, t) +
∂ J(x, t)

∂t


= 0. (39)

Integrating in the above equation, gives finally

F(x, u∗, t) +
∂ J(x, t)

∂x
f (x, u∗, t) +

∂ J(x, t)
∂t

= g(t),

where g(t) is an arbitrary, time-dependent function.
Thus, for an optimal closed-loop λ∗-strategy, the Pontryagin optimal scheme gives an non-homogeneous Hamilton–

Jacobi–Bellman equation. The Bellman maximum principle instead, gives an homogeneous Hamilton–Jacobi–Bellman
equation. We conclude this section by saying that for a closed-loop λ∗-strategy, both (Pontryagin’s and Bellman’s) optimal
approaches, are equivalent modulus an arbitrary time-dependent function.

4. The optimization problem as a classically constrained system

From a structural point of view, the optimization problem is then characterized completely by the Lagrangian multiplier
λ. For a open-loop λ∗-strategy, the optimization of the action (16) gives a system of coupled ordinary differential equations:
the Pontryagin equations (18) and (19) for both, open or closed-loop optimal u∗-strategies. For a closed-loop λ∗-strategy
instead, the optimization of the action (16) gives a partial differential equation for λ: the consistency relation (34), which
is equivalent (modulus an arbitrary time-dependent function) to the Hamilton–Jacobi–Bellman equation of the dynamic
programming theory.

From a physical point of view, the Pontryagin equations (18) and (19) can be seen as the Hamilton equations of a classical
mechanical system, if we identify the Lagrangian multiplier λ with the canonical momentum px of the x variable. The
Hamilton–Jacobi–Bellman equation (38) instead, looks like a Schrödinger equation for the wave function J(x, t).

This is a very surprising analogy. To understand it deeply, we will take a physical point of view of the dynamical
optimization problem. We will consider it as a physical dynamic system and explore its characteristics from both the
classical and quantummechanics points of view.Wehope to found the relations between Pontryagin’s scheme andBellman’s
dynamic programming, from a physicist’s perspective. We start with the classical vision.

Consider again the Lagrangian (21). If we want to think of x as a position variable for a certain physical particle and of px
as its canonical momentum, the Lagrangian (21) has the wrong sign. To consider this system as a physical one, we would
take instead the Lagrangian

L′(x, u, ẋ, u̇) = pxẋ − (F(x, u, t) + pxf (x, u, t)). (40)

Obviously, these Lagrangians have the same equations of motion. Now, we analyze (40) from the phase space (x, u, px, pu, )
point of view; that is, we formulate aHamiltonian theory related to (40). To do that, we firstmust note that, in the Lagrangian
(40), the momentum definition for the variable u is

pu =
∂L′(x, u, ẋ, u̇, )

∂ u̇
= 0.

Note that in this case, the momentum variable definition does not allows us to write pu in terms of its respective velocity u̇,
so the momentum definition gives origin to one constraint (this is the same problem that appeared in the Lagrangian (14)).
To this point, we need to apply Dirac’s method to study the system in the right way. According to Dirac’s classification, the
above constraint is called primary constraint, and we write it as:

Φ1 = pu = 0. (41)

The Hamiltonian H = H(x, u, px, pu) is

H = pxẋ + puu̇ − L′(x, u, ẋ, u̇),

which expands into

H = pxẋ + puu̇ + (F(x, u, t) + pxf (x, u, t) − pxẋ),

or

H = Φ1u̇ + H0(x, u, px, pu),

with

H0(x, u, px, pu) = F(x, u, t) + pxf (x, u, t). (42)
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For the constraint surface Φ1 = 0, we get

H(x, u, px, pu) = H0(x, u, px, pu).

To incorporate these restrictions over the phase space, we define the extended Hamiltonian

H̃(x, u, px, pu) = H0 + µ1Φ1, (43)

whereµ1 is a Lagrangemultiplier. Now,we require the constraintΦ1 to be preserved in timewith the extendedHamiltonian
(43) such that

Φ̇1 = {Φ1, H̃} = 0.

This equation gives,

Φ̇1 = {pu, H̃} =
∂H̃
∂u

=
∂H0

∂u
= 0. (44)

Thus, (44) is a new secondary constraint:

Φ2 =
∂H0

∂u
=

∂F(x, u, t)
∂u

+ px
∂ f (x, u, t)

∂u
= 0. (45)

In this way, the optimization of the Hamiltonian with respect to the control variable appears in the phase space as a
secondary constraint. To incorporate the new constraint in the model, we must consider the Hamiltonian

H̃2(x, u, px, pu) = H0 + µ1Φ1 + µ2Φ2.

We start again and impose time preservation for the constraints set {Φ1, Φ2} with the new Hamiltonian H̃2:

Φ̇1 = {Φ1, H̃2} = 0,

Φ̇2 = {Φ2, H̃2} = 0.

The above set of two equations gives only restrictions for the Lagrange multipliers µ1, µ2 and no new constraint appears.
In fact these equations are explicitly

{Φ1,H0} + µ2{Φ1, Φ2} = 0 (46)
{Φ2,H0} + µ1{Φ2, Φ1} = 0, (47)

or in matrix form
{Φ1,H0}

{Φ2,H0}


+


0 {Φ1, Φ2}

−{Φ1, Φ2} 0


µ1
µ2


=


0
0


.

The antisymmetric matrix

∆ =


0 {Φ1, Φ2}

−{Φ1, Φ2} 0


,

is called the Dirac matrix. Now

{Φ1, Φ2} = {pu, Φ2} =
∂Φ2

∂u
=

∂2H0

∂u2
,

so

∆ =

 0
∂2H0

∂u2

−
∂2H0

∂u2
0

 .

The determinant of the Dirac matrix is

det(∆) =

∂2H0

∂u2

2
. (48)

If

∂2H0

∂u2
≠ 0, (49)

on the constraint surface where Φ1 = 0, Φ2 = 0, then the Dirac matrix is invertible and the constraint set {Φ1, Φ2} is
second-class (see [11,12,15]).
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For the rest of the paper, we will assume that (49) is valid (for example, in a typical control problem in economics, the
function F is quadratic and the function f is linear in terms of the control variable, so ∂2H0

∂u2
≠ 0). Thus, the optimization

problem defined by the Lagrangian (40), from a physical point of view, corresponds to a second-class constrained dynamic
system in the phase space.

Now Eqs. (46), (47) can be used to obtain the Lagrange multipliers µ1 and µ2 as
µ1
µ2


= −∆−1


{Φ1,H0}

{Φ2,H0}


,

that is


µ1
µ2


=


1

{Φ1, Φ2}
{Φ2,H0}

−
1

{Φ1, Φ2}
{Φ1,H0}

 . (50)

The time evolution of any function F over the phase space generated by the Hamiltonian H̃2 is

Ḟ = {F , H̃2} = {F ,H0} + µ1{F , Φ1} + µ2{F , Φ2}.

Substituting the Lagrangian multipliers (50) in the above equation we obtain

Ḟ = {F ,H0} + {F , Φ1}
1

{Φ1, Φ2}
{Φ2,H0} + {F , Φ2}

1
{Φ2, Φ1}

{Φ1,H0}. (51)

The whole expression in the right hand side of (51) is called the Dirac bracket, defined by

{A, B}DB = {A, B} + {A, Φ1}∆
−1
12 {Φ2, B} + {A, Φ2}∆

−1
21 {Φ1, B},

so we can write (51) as

Ḟ = {F ,H0}DB.

The dynamical evolution of the variables x, px, u, pu in the phase space, in the presence of the second-class constraints Φ1,
Φ2 is then, given by

ẋ = {x,H0}DB
ṗx = {px,H0}DB
u̇ = {u,H0}DB
ṗu = {pu,H0}DB.

The last equation is

ṗu = {Φ1,H0}DB = {Φ1, H̃2} = 0, (52)

which is consistent with the time preservation of Φ1 = 0.
The Dirac bracket between the second-class constraints Φ1, Φ2 is

{Φ1, Φ2}DB = {Φ1, Φ2} + {Φ1, Φ1}
1

{Φ1, Φ2}
{Φ2, Φ2} + {Φ1, Φ2}

1
{Φ2, Φ1}

{Φ1, Φ2}

= 0.

Thus, the use of the Dirac bracket is equivalent to eliminating the second-class constraints from the theory or, which is the
same, to set all second constraints to zero.

Now we compute explicitly the dynamic behavior of variables x and px for the constrained system, that is

ẋ = {x,H0}DB

= {x,H0} + {x, Φ1}
1

{Φ1, Φ2}
{Φ2,H0} + {x, Φ2}

1
{Φ2, Φ1}

{Φ1,H0}

=
∂H0

∂px
+ {x, pu}

1
{Φ1, Φ2}

{Φ2,H0} + {x, Φ2}
1

{Φ2, Φ1}
{pu,H0},

but {x, pu} = 0 and {pu,H0} = −
∂H0
∂u = −Φ2 = 0, so

ẋ = {x,H0}DB =
∂H0

∂px
.
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In the same way we obtain, for the momentum,

ṗx = {px,H0}DB

= {px,H0} + {px, Φ1}
1

{Φ1, Φ2}
{Φ2,H0} + {px, Φ2}

1
{Φ2, Φ1}

{Φ1,H0}

= −
∂H0

∂x
+ {px, pu}

1
{Φ1, Φ2}

{Φ2,H0} + {px, Φ2}
1

{Φ2, Φ1}
{pu,H0},

but {px, pu} = 0, then

ṗx = {px,H0}DB = −
∂H0

∂x
.

Thus, the constrained dynamic given by the Dirac bracket is the same unconstrained dynamic given by the Pontryagin
equations. These Pontryagin equations are the classical equations of motion for our physical constrained system.

5. Dynamic optimization and quantummechanics

Until now, we have studied the dynamic optimization problem from a classical point of view, and we have seen that it is
equivalent to a classical physically constrained system. However, what happens at the quantum level? To explore that view,
we will quantize our classical system and study its consequences.

Again, consider the classical Hamiltonian

H0(x, u, λ, px, pu) = F(x, u, t) + f (x, u, t) px. (53)

Now, we have to quantize the classical Hamiltonian (53). For this purpose, we replace px, pu with the appropriate quantum
momentum operators (in the usual sense, with h̄ = 1):

p̂x = −i
∂

∂x

p̂u = −i
∂

∂u
,

thus, the Schrödinger equation3

Ĥ0(x, u, p̂x, p̂u) Ψ (x, u, t) = i
∂

∂t
Ψ (x, u, t)

writes as:
F(x, u, t) − if (x, u, t)

∂

∂x


Ψ = i

∂Ψ

∂t
, (54)

where Ψ = Ψ (x, u, t) (note that we have chosen right-hand side order for the momentum operator in the quantization
process).

According to Dirac, not all solutions Ψ in the Schrödinger equation (54) are physically admissible. The physical solutions
ΨP must satisfy the constraint Eqs. (41) and (45). In the quantum case, these equations must be imposed as operator
equations over the Hilbert space of states in the form

Φ̂1 ΨP = 0,

Φ̂2 ΨP = 0. (55)

The physically admissible states are the solutions of (54) that satisfy the constraints in Eq. (55). Explicitly, we can define
these constraints operators as

Φ̂1 = p̂u = −i
∂

∂u

Φ̂2 =
∂F(x, u, t)

∂u
− i

∂ f (x, u, t)
∂u

∂

∂x
.

3 We are using the Schrödinger equation ĤΨ = i ∂
∂t Ψ in a general sense. For a nonrelativistic particle, the Hamiltonian operator is quadratic in the

momentum operator, so the Schrödinger equation is a second order partial differential equation and reads as

−

h̄2
2m

∂2

∂x2
+U(x)


Ψ = i ∂

∂t Ψ . For a relativistic

massive particle, the Hamiltonian is linear in the momentum operator, so the Schrödinger equation is a first order partial differential equation given by
iγ µ∂µ − m


Ψ = 0 called the Dirac’s equation. Clearly, the Hamiltonian for the dynamic optimization problem is closer to the Dirac’s Hamiltonian.
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Thus, physically admissible solutions ΨP(x, u, t), must satisfy

−i
∂

∂u
ΨP = 0, (56)

∂F(x, u, t)
∂u

− i
∂ f (x, u, t)

∂u
∂

∂x


ΨP = 0, (57)

and the Schrödinger equation
F(x, u, t) − if (x, u, t)

∂

∂x


ΨP = i

∂

∂t
ΨP . (58)

Eq. (56) implies that the wave function is independent of u, thus ΨP = ΨP(x, t). Now, if we define the function S(x, t) as

ΨP(x, t) = eiS(x,t) (59)
the quantum Schrödinger’s equations (56) and (57) can be writing in terms of S(x, t) as

∂F(x, u, t)
∂u

+
∂ f (x, u, t)

∂u
∂ S(x, t)

∂x
= 0, (60)

F(x, u, t) + f (x, u, t)
∂S(x, t)

∂x
= −

∂S(x, t)
∂t

. (61)

The constraint (60) is the expression for the maximization of the quantity

F(x, u, t) + f (x, u, t)
∂S(x, t)

∂x
,

with respect to the control variable u, so Eqs. (60) and (61) can be written as a unique equation:

max
u


F(x, u, t) + f (x, u, t)

∂S(x, t)
∂x


= −

∂S(x, t)
∂t

, (62)

which is the Hamilton–Jacobi–Bellman equation (37) if the S(x, t) function is identified with the optimal value function
J(x, t). Thus, the dynamic programming approach to the dynamic optimization problem corresponds to a quantum view.

The Dirac’s quantization method used have some problems. The commutator of the constraint operators Φ̂1 and Φ̂2 is,
in general, different from zero, thus

[Φ̂1, Φ̂2] = α(x, u)Î ≠ 0, (63)
for some function α, in such a way that, when applied to a physical state ΨP , we find

[Φ̂1, Φ̂2] ΨP = α(x, u)ΨP .

This implies that 0 = α(x, u)ΨP and 0 = ΨP . Thus, there is not physical wave function at all.
This is related to the fact that the Poisson bracket of two second-class constraints {Φ1, Φ2} is different from zero. After the

quantization, the Poisson bracket becomes the commutator (63). Then, Dirac’s quantization procedure is not well-defined
for second-class constraints (for details related to this issue see [21]).

Note thatwe have quantized themodelwithout solving the classical constraints. Amore transparent procedurewould be
to solve the classical constraints first, and then, to quantize (these procedures give, in general, different answers; see [21]).
In this way, we can solve the classical constraint (41) first simply by setting pu = 0. Let

u = u∗(x, px, t) (64)
be the solution of the constraint (45) for u in terms of x and px. These solutions can be substituted in the classical Hamiltonian
(42), in such a way that we end with a reduced Hamiltonian H∗

0 that depends only on x and px:
H∗

0 (x, px, t) = H0(x, px, u∗(x, px, t), t),

= F(x, u∗, t) + pxf (x, u∗, t). (65)
Quantizing the above Hamiltonian by replacing

px → p̂x = −i
∂

∂x
,

the Schrödinger equation reads in this case

F(x, u∗(x, p̂x, t), t) + p̂xf (x, u∗(x, p̂x, t))Ψ = i
∂Ψ

∂t
. (66)

By replacing the relation (59) in (66), we obtain a non-linear differential equation for S(x, t). Note that, when right-hand
side order is taken in the quantization procedure, the substitution of (59) in the Schrödinger equation (66) ends with the
same Hamilton–Jacobi–Bellman equation (38). Thus, the Hamilton–Jacobi–Bellman equation of the dynamic programming
method correspond to the right quantization procedure of the classical constrained system associated to the dynamical
optimization problem.
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6. Conclusions

In this article, we have examined the structure of the dynamic optimization problem from a physical perspective,
and we conclude that the correct analysis of the optimization problem must be done either in the phase-space or using
the classical Hamiltonian approach. Due to the presence of constraints in the theory, we must apply Dirac’s method for
constrained systems. Dirac’s analysis implies that the theory has two second-class constraints. One of these constraints fixes
the momentum associated to the control variable, and the other represents the optimization of the Hamiltonian respect to
the control variable.

The dynamic evolution of this constrained system is given by Dirac’s brackets of the canonical variables with the
Hamiltonian. This dynamic results to be identical to the unconstrained one given by the Pontryagin equations. Thus, the
Pontryagin equations are the correct classical equations of motion of our physical optimization problem.

In the same Pontryagin scheme, by imposing a closed-loop λ-strategy, the optimality of the action gives a consistency
relation for λ(x, t). This consistency relation is connected to the Hamilton–Jacobi–Bellman equation. The solution of the
optimization problem in this λ-closed-loop case is obtained by the Pontryagin equation for the x coordinate, evaluated over
the optimal λ∗-strategy that satisfies the consistency condition.

The same result is achieved by quantizing the classical constrained model. By writing the wave function in the form
Ψ (x, t) = eiS(x,t) and substituting it into the quantum Schrödinger equation, a non-linear partial differential equation is ob-
tained for the S function. For the right-hand side quantization, this non-linear equation is just the Hamilton–Jacobi–Bellman
equation when S(x, t) is identified with the optimal value function J(x, t).

Thus, we end this paper by concluding that Bellman’s maximum principle of the dynamic programming method
corresponds to the right-hand side quantization of the Pontryagin theory.
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